The Mauthner cell-mediated C-start reflex is very quick, with about 5-10 ms latency between the acoustic/tactile stimulus and the Mauthner cell discharge, and only about 2 ms between the discharge and the unilateral muscle contraction. Mauthner cells are thus the quickest motor neuron to respond to the stimulus. It makes the C-start response behaviorally important as a way to initiate the escape reflex in an all or nothing fashion, while the direction and speed of the escape can be corrected later through the activity of smaller motor neurons.
In larvae zebrafish about ~60% of the total population of reticulospinal neurons are also activated by a stimulus that elicits the M-spike and C-start escape. A well-studied group of these reticulospinal neurons are the bilaterally paired M-cell homologues denoted MiD2cm and MiD3cm. These neurons exhibit morphological similarities to the M-cell including a lateral and ventral dendrite. They are located in 5 and 6 of hindbrain respectively, and also receive auditory input in parallel with the M-cell from the pVIIIth nerve. In fish, water jet stimuli that activate these neurons elicit non-mauthner initiated C-starts of a longer latency, compared with M-cell associated ones.
Although the M-cell is often considered the prototype of a command neuron in , this designation may not be fully warranted. Although electrical stimulation of the M-cell is sufficient for eliciting a C-start, this C-start is normally weaker than the one evoked by a sensory stimulus. Moreover, the C-start can be evoked even with the M-cell ablation, although in this case the latency of the response increases. The most widely accepted model of the M-cell system, or brainstem escape network, is that the M-cell initiates a fixed action pattern to the left or right by activating a spinal motor circuit initially described by J. Diamond and colleagues, but the precise trajectory of the escape is encoded by population activity in the other classes of reticulospinal neurons functioning in parallel to the M-cell. This notion is supported by studies using in vivo calcium imaging in larval zebrafish which show that MiD2cm and MiD3cm are activated along with the M-cell when an offending stimulus is directed towards the head but not the tail, and are correlated with C-starts of a larger initial turn angle.
Another component of the escape response is mediated by cranial relay neurons that are activated by the Mauthner cell spike. These neurons are electrically coupled with motoneurons which innervate extraocular, jaw and opercular muscles and mediate pectoral fin adduction in hatchetfish. This component of the neural circuit was first described by Michael V.L. Bennett and colleagues.
In adult metamorphosis anurans (frogs and toads) that do not have a tail, M-cells are nevertheless preserved and their discharges are associated with rapid movement of during an escape. In addition, larval (eel-like jawless fish of superclass Cyclostomata) exhibit rapid withdrawal behavior that is correlated with Mauthner cell activity and involves bilateral, posture-dependent muscular contractions along the length of the body. Larval lampreys (ammocoetes) are filter feeders that occupy crescent-shaped burrows in the silt or mud bottoms of freshwater stream beds, with their mouths positioned at, or just above the surface of the mud. Sudden vibration activates both Mauthner neurons in the lamprey brainstem, which causes an accordion-like muscular contraction in the trunk and tail and pulls the head down into the burrow.
The ventral dendrite receives information from the optic tectum and spinal cord while the lateral dendrite receives inputs from the octovolateralis systems (the lateral line, acoustic inputs from the inner ear, and inertial information from the statoliths brought by the cranial nerve VIII).
The fibers from the ipsilateral cranial nerve VIII terminate in excitatory mixed electrical and synapses on the M-cell. They also electrically activate inhibitory interneurons that terminate on the M-cells. Despite the inhibitory input having one more synapse in its pathway, there is no delay between the excitation and inhibition because the intervening synapse is electrical. It was shown that for weak stimuli the inhibition wins over the excitation, preventing the M-cell from a discharge, while for stronger stimuli excitation becomes dominant. The Inner ear afferents also terminate with electrical synapses on a population PHP inhibitory interneurons (see below) to provide an additional level of feed forward inhibition. The Mauthner cell also has GABA-, dopamine-, serotonin- and inputs, each restricted to certain dendritic region.
Inputs from the optic tectum and the lateral line help control which way the C-startle bends by biasing the mauthner cells when there are obstacles in the vicinity. In cases where movement away from the stimulus is blocked, the fish may bend towards the disturbance.
Evolutionarily, the axon cap is a more recent development than the Mauthner cell itself, so some animals, such as and , while having functional Mauthner cells, don't have axon cap at all, while some other animals, such as amphibia and lungfish, do have a very simplified version of it.
Due to its high amplitude, in some animals the negative part of Mauthner cell field potential can be detected up to several hundred micrometres away from the cell itself. The positive components of the field potential are strongest in the axon cap, reaching amplitudes of 45 mV in adult goldfish. With a knowledge of these properties of the field potential, it is possible to use field potential monitoring as a way to find the Mauthner cell body in vivo, or in vitro in a whole brain preparation, moving the recording electrode in the hindbrain, while at the same time stimulating the spinal cord, thus evoking antidromic action potentials in the Mauthner cell axon.
Spontaneous preference in turn direction in young goldfish is correlated with one of the Mauthner cells being bigger than the other one. It is possible to change the preference of fish by raising them in conditions facilitating turns in a specific direction; this shift is accompanied by a correspondent change in M-cell sizes.
The M-cell is a model system in the field of Neuroethology. The M-cell system has served for detailed neurophysiological and histological investigations of synaptic transmission and synaptic plasticity. Studies by Donald Faber and Henri Korn helped to establish the one Synaptic vesicle hypothesis of synaptic transmission in the CNS. Other important research topics that have been investigated in the M-cell system include studies by Yoichi Oda and colleagues on inhibitory long-term potentiation and audition conditioning of the startle response, and studies by Alberto Pereda and colleagues on plasticity of electrical synapses. Other research topics investigated in the M-cell system include studies of Vertebral column neural networks and neural regeneration by Joe Fetcho and colleagues, as well as underwater sound localization, and the biophysics of computation in single neurons.
Mauthner cells in other types of behavior
Morphology and connections
Inputs to the M-cell: excitation and feed forward inhibition
Axon cap
Feedback network
Outputs
Electrophysiology
Ephaptic properties
Signature field potential
Plasticity
History of research
Further reading
|
|